Comparison of Arctic Sea Ice Thickness from Satellites, Aircraft, and PIOMAS Data
نویسندگان
چکیده
In this study, six Arctic sea ice thickness products are compared: the AVHRR Polar Pathfinder-extended (APP-x), ICESat, CryoSat-2, SMOS, NASA IceBridge aircraft flights, and the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS). The satellite products are based on three different retrieval methods: an energy budget approach, measurements of ice freeboard, and the relationship between passive microwave brightness temperatures and thin ice thickness. Inter-comparisons are done for the periods of overlap from 2003 to 2013. Results show that ICESat sea ice is thicker than APP-x and PIOMAS overall, particularly along the north coast of Greenland and Canadian Archipelago. The relative differences of APP-x and PIOMAS with ICESat are −0.48 m and −0.31 m, respectively. APP-x underestimates thickness relative to CryoSat-2, with a mean difference of −0.19 m. The biases for APP-x, PIOMAS, and CryoSat-2 relative to IceBridge thicknesses are 0.18 m, 0.18 m, and 0.29 m. The mean difference between SMOS and CryoSat-2 for 0~1 m thick ice is 0.13 m in March and −0.24 m in October. All satellite-retrieved ice thickness products and PIOMAS overestimate the thickness of thin ice (1 m or less) compared to IceBridge for which SMOS has the smallest bias (0.26 m). The spatial correlation between the datasets indicates that APP-x and PIOMAS are the most similar, followed by APP-x and CryoSat-2.
منابع مشابه
Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness
Arctic sea ice thickness distributions from models participating in the World Climate Research Programme Coupled Model Intercomparison Project Phase 5 (CMIP5) are evaluated against observations from submarines, aircraft and satellites. While it is encouraging that the mean thickness distributions from the models are in general agreement with observations, the spatial patterns of sea ice thickne...
متن کاملUncertainty in modeled Arctic sea ice volume
250 words) 25 Uncertainty in the Pan-arctic Ice Ocean Modeling and Assimilation System (PIOMAS) 26 Arctic sea ice volume record is characterized. A range of observations and approaches, 27 including in-situ ice thickness measurements, ICESat retrieved ice thickness, and model 28 sensitivity studies, yields a conservative estimate for October Arctic ice volume 29 uncertainty of +/1.35x10 km and ...
متن کاملAssessment of sea ice simulations in the CMIP5 models
The historical simulations of sea ice during 1979 to 2005 by the Coupled Model Intercomparison Project Phase 5 (CMIP5) are compared with satellite observations, Global Ice-Ocean Modeling and Assimilation System (GIOMAS) output data and Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) output data in this study. Forty-nine models, almost all of the CMIP5 climate models and earth sys...
متن کاملCryoSat-2 estimates of Arctic sea ice thickness and volume
[1] Satellite records show a decline in ice extent over more than three decades, with a record minimum in September 2012. Results from the Pan-Arctic Ice-Ocean Modelling and Assimilation system (PIOMAS) suggest that the decline in extent has been accompanied by a decline in volume, but this has not been confirmed by data. Using new data from the European Space Agency CryoSat-2 (CS-2) mission, v...
متن کاملImproved Arctic sea ice thickness projections using bias-corrected CMIP5 simulations
Projections of Arctic sea ice thickness (SIT) have the potential to inform stakeholders about accessibility to the region, but are currently rather uncertain. The latest suite of CMIP5 global climate models (GCMs) produce a wide range of simulated SIT in the historical period (1979–2014) and exhibit various biases when compared with the Pan-Arctic Ice–Ocean Modelling and Assimilation System (PI...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016